01_Analyses_Study5

Author

SSK

Description

These analyses were conducted for Chapter 1 Study 5 of my dissertation. This study is currently under review at Journal of Experimental Psychology - Applied.

Abstract

In the healthcare context, patient socioeconomic status (SES) informs how patients are perceived and treated, contributing to downstream health disparities. The current experimental research reveals the nature of such interpersonal challenges for low-SES patients. Across four experiments (total N = 1142), participants engaged in a series of mock telehealth visits with a patient who failed to follow treatment recommendations twice and were therefore noncompliant. Evidence suggests that after repeated noncompliance, low-SES patients are perceived disproportionately more harshly, as more lazy, less honest, and as exaggerating their pain more, than high-SES patients exhibiting the same behavior. These worsening perceptions of the patient predict lower intentions to invest in care for the patient in the future. Furthermore, low-SES patients receive less intense treatment than high-SES patients, regardless of patterns of noncompliance. Our findings for low-SES bias in the healthcare context are not moderated by patient race or gender. Internal meta-analyses provide additional support for these findings. This low-SES bias in the healthcare context suggests that biased perceptions of patients by their SES plays a pivotal role in social class health disparities.

Keywords: bias, stereotypes, socioeconomic status, healthcare, health

Set-up

Code
# loading packages
library(psych)
library(ggplot2)
library(effsize)
library(dplyr)
library(kableExtra)
library(GPArotation)
library(stats)
library(plyr)
library(psych)
library(tidyverse)
library("Hmisc")
library(forcats)
library(grid)
library(ggcorrplot)
library(corrplot)
library(gridExtra)
library("ggdark")
library(broom)
library("effects")
library(lsmeans)
library(emmeans)
library(diagram)
library(pwr)
library(dplyr)
library(tidyr)
library(nlme)
library(rstatix)
library(multcomp)
library(lme4)
library(lmerTest)
library(cowplot)
library(report)
library(sjPlot)
library(lavaan)
library(lavaan)
library("corrplot")
library(dplyr)
library(GPArotation)
library(psych)
library(RcmdrMisc)
library(plot3D)
library(effectsize)
library(sjmisc)
library(rstatix)
library(gtsummary)
Code
# creating ggplot functions 
theme_perez <- function() {
    ggplot2::theme_bw() +
    ggplot2::theme(
      axis.text = element_text(colour = "black",  family = "Times New Roman", size = 12),
    axis.title = element_text(colour = "black", family = "Times New Roman", size = 13),
    legend.title = element_text(colour = "black", family = "Times New Roman", size = 13),
    legend.text = element_text(colour = "black", family = "Times New Roman", size = 12),
    plot.title = element_text(colour = "black", family = "Times New Roman", size = 13),
    plot.subtitle = element_text(colour = "black", family = "Times New Roman", size = 13),
    strip.text = element_text(colour = "black", family = "Times New Roman", size = 13))
}

horzi_theme <- theme(    #   remove the gray background
  panel.background    = element_rect( size=.1, colour="black", fill="white") ,
  #   make the major gridlines light gray and thin
  panel.grid.major.y  = element_line( size=.1, colour="#666666" ) ,
  #   suppress the vertical grid lines
  panel.grid.major.x  = element_blank() ,
  #   suppress the minor grid lines
  panel.grid.minor    = element_blank() ,
  #   add axes
  axis.line           = element_line( size=.2 , colour="#666666" ),
  #   adjust the axis ticks
  axis.ticks          = element_line( size=.1 , colour="#666666" ),
  #   move the y-axis over to the left
  #axis.title.y        = element_text( angle=90, vjust=.5, hjust=.5 ),
  #   increase margin moved-over y-axis label fits
  # plot.margin = unit( c(.5,.25,.25,.5) , "in") ,
  title = element_text(  size=12 ) ,
  axis.title.x = element_text( size=12 ) ,
  axis.title.y = element_text( size=12 ) ,
  axis.text.x = element_text( size=12 ) ,
  axis.text.y = element_text( size=12 )
)

horzi <- horzi_theme

stat_sum_df <- function(fun, geom="crossbar", ...) {
  stat_summary(fun.data=fun, colour="black", geom=geom, width=.5,  ...)
}

# define the dodge object for equivalent error bar and geom_bar
dodge <- position_dodge(width=0.9)

# define a geom_bar
bars <- geom_bar(stat="summary", fun.y="mean", position="dodge")
Code
# importing data 
data <- read.csv("Data_Processed_Study5.csv")
data_wide <- read.csv("Data_Processed_Study5-Wide.csv")

ns

Code
kable(table(data$study), col.names = c("Study","n"))
Study n
1 568
2 242
3 534
4 940
Code
kable(table(data_wide$conditionSES), col.names = c("SES Condition", "n"))
SES Condition n
High SES 569
Low SES 573

Reported Outcomes

Code
ggplot(data=data, aes(as.factor(strike), lazy, fill=conditionSES)) +
  geom_bar(stat="summary", fun.y="mean", position="dodge") +
  stat_sum_df("mean_se", geom = "errorbar", position= position_dodge(.9), conf.int=.68, width=0.2) +
  expand_limits(y=c(1:5)) +
  scale_y_continuous(breaks=c(1:5)) +
  theme_perez() +
  scale_fill_grey() +
  xlab("Noncompliance Incident / 'Strike'") +
  ylab("Perceived Patient Laziness") +
  guides(fill=guide_legend(title="Patient SES")) +
  theme(legend.position="bottom") 

Code
modLazy <- lmer(lazy ~ conditionSES * strike + ladder_Self + income_Self + ed_Own + study + conditionRace + (1|ResponseId), data=data, na.action=na.omit)

kable(anova(modLazy), caption = "Model Output")
Model Output
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
conditionSES 0.0868157 0.0868157 1 1072.5480 0.1594355 0.6897563
strike 158.8268309 158.8268309 1 641.5807 291.6824563 0.0000000
ladder_Self 0.6957271 0.6957271 1 639.2166 1.2776895 0.2587530
income_Self 0.8244455 0.8244455 1 639.3323 1.5140784 0.2189703
ed_Own 0.1102541 0.1102541 1 638.9821 0.2024795 0.6528795
study 0.3310538 0.3310538 1 639.8909 0.6079741 0.4358399
conditionRace 4.3613881 4.3613881 1 639.1973 8.0096064 0.0047991
conditionSES:strike 2.7539884 2.7539884 1 641.5847 5.0576473 0.0248559
Code
effectsize::eta_squared(modLazy, partial=T) %>% 
  select(1:2) %>% 
  kable(caption = "Effect Sizes")
Effect Sizes
Parameter Eta2_partial
conditionSES 0.0001486
strike 0.3125404
ladder_Self 0.0019948
income_Self 0.0023626
ed_Own 0.0003168
study 0.0009492
conditionRace 0.0123756
conditionSES:strike 0.0078214
Code
kable(emmeans(modLazy, pairwise ~ conditionSES * strike)$contrasts, caption = "Contrasts")
Contrasts
contrast estimate SE df t.ratio p.value
High SES strike1 - Low SES strike1 -0.1270827 0.0871313 978.1829 -1.458520 0.4631753
High SES strike1 - High SES strike2 -0.6104077 0.0588507 641.6579 -10.372138 0.0000000
High SES strike1 - Low SES strike2 -0.9226251 0.0871709 979.0184 -10.584100 0.0000000
Low SES strike1 - High SES strike2 -0.4833250 0.0871390 978.3491 -5.546600 0.0000002
Low SES strike1 - Low SES strike2 -0.7955424 0.0575633 642.2758 -13.820296 0.0000000
High SES strike2 - Low SES strike2 -0.3122174 0.0871785 979.1787 -3.581359 0.0020300

Model Output
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
conditionSES 1.5722784 1.5722784 1 1042.4821 3.3327546 0.0681990
strike 58.1895127 58.1895127 1 638.5317 123.3441658 0.0000000
ladder_Self 1.9187761 1.9187761 1 641.9340 4.0672250 0.0441389
income_Self 0.4361210 0.4361210 1 640.4218 0.9244446 0.3366735
ed_Own 0.2529271 0.2529271 1 638.0019 0.5361289 0.4643103
study 6.0381069 6.0381069 1 638.2073 12.7989603 0.0003731
conditionRace 3.3232329 3.3232329 1 637.7725 7.0442485 0.0081503
conditionSES:strike 5.2630705 5.2630705 1 638.5657 11.1561175 0.0008863
Effect Sizes
Parameter Eta2_partial
conditionSES 0.0031868
strike 0.1618953
ladder_Self 0.0062960
income_Self 0.0014414
ed_Own 0.0008396
study 0.0196603
conditionRace 0.0109244
conditionSES:strike 0.0171706
Contrasts
contrast estimate SE df t.ratio p.value
High SES strike1 - Low SES strike1 0.0116065 0.0787042 1001.8203 0.1474699 0.9988566
High SES strike1 - High SES strike2 0.2980549 0.0548438 639.6212 5.4346141 0.0000005
High SES strike1 - Low SES strike2 0.5660343 0.0788430 1004.8965 7.1792618 0.0000000
Low SES strike1 - High SES strike2 0.2864484 0.0785734 998.9261 3.6456157 0.0015957
Low SES strike1 - Low SES strike2 0.5544278 0.0537029 640.9502 10.3239893 0.0000000
High SES strike2 - Low SES strike2 0.2679794 0.0787115 1001.9751 3.4045784 0.0038398

Model Output
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
conditionSES 0.9130411 0.9130411 1 1048.1995 1.9665388 0.1611118
strike 66.7179797 66.7179797 1 643.5929 143.6994494 0.0000000
ladder_Self 0.1674218 0.1674218 1 638.9370 0.3605987 0.5483869
income_Self 0.5014529 0.5014529 1 639.1265 1.0800463 0.2990802
ed_Own 0.0049003 0.0049003 1 639.1704 0.0105545 0.9182055
study 6.7708951 6.7708951 1 639.7015 14.5833836 0.0001471
conditionRace 2.1196033 2.1196033 1 639.6130 4.5652734 0.0330053
conditionSES:strike 1.6194358 1.6194358 1 643.5929 3.4879957 0.0622697
Effect Sizes
Parameter Eta2_partial
conditionSES 0.0018726
strike 0.1825236
ladder_Self 0.0005641
income_Self 0.0016870
ed_Own 0.0000165
study 0.0222890
conditionRace 0.0070870
conditionSES:strike 0.0053904
Contrasts
contrast estimate SE df t.ratio p.value
High SES strike1 - Low SES strike1 0.0439439 0.0776263 1004.3138 0.5660956 0.9421056
High SES strike1 - High SES strike2 -0.3839602 0.0543399 644.5949 -7.0658945 0.0000000
High SES strike1 - Low SES strike2 -0.4817359 0.0776263 1004.3138 -6.2058331 0.0000000
Low SES strike1 - High SES strike2 -0.4279041 0.0777130 1006.2435 -5.5062120 0.0000003
Low SES strike1 - Low SES strike2 -0.5256798 0.0529657 643.1135 -9.9249051 0.0000000
High SES strike2 - Low SES strike2 -0.0977757 0.0777130 1006.2435 -1.2581646 0.5898776
Model Output
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
conditionSES 0.0041850 0.0041850 1 1037.8062 0.0068989 0.9338202
strike 290.2559191 290.2559191 1 643.8735 478.4752726 0.0000000
ladder_Self 1.7317376 1.7317376 1 639.8380 2.8547001 0.0915944
income_Self 0.6243648 0.6243648 1 639.5342 1.0292404 0.3107208
ed_Own 0.0160595 0.0160595 1 639.6742 0.0264734 0.8708009
study 10.7450764 10.7450764 1 639.7479 17.7128287 0.0000294
conditionRace 0.7125627 0.7125627 1 639.7420 1.1746311 0.2788600
conditionSES:strike 0.0395832 0.0395832 1 643.8731 0.0652513 0.7984622
Effect Sizes
Parameter Eta2_partial
conditionSES 0.0000066
strike 0.4263160
ladder_Self 0.0044418
income_Self 0.0016068
ed_Own 0.0000414
study 0.0269413
conditionRace 0.0018327
conditionSES:strike 0.0001013
Code
mod <- lm(givingUp_2 ~ lazy_2 + conditionSES + lazy_1 + income_Self + ladder_Self + ed_Own + conditionRace + study, data_wide)

tab_model(mod)
  givingUp_2
Predictors Estimates CI p
(Intercept) 0.23 -0.28 – 0.74 0.379
lazy 2 0.42 0.33 – 0.51 <0.001
conditionSES [Low SES] -0.13 -0.30 – 0.03 0.118
lazy 1 0.23 0.14 – 0.33 <0.001
income Self -0.02 -0.06 – 0.03 0.530
ladder Self 0.04 -0.01 – 0.09 0.083
ed Own 0.01 -0.12 – 0.14 0.858
conditionRace [White] 0.02 -0.15 – 0.19 0.806
study 0.18 0.09 – 0.28 <0.001
Observations 641
R2 / R2 adjusted 0.289 / 0.280
Code
effectsize::eta_squared(mod, partial=T) %>% 
  select(1:2) %>% 
  kable(caption = "Effect Sizes")
Effect Sizes
Parameter Eta2_partial
lazy_2 0.2483449
conditionSES 0.0036602
lazy_1 0.0421355
income_Self 0.0001989
ladder_Self 0.0037633
ed_Own 0.0015023
conditionRace 0.0000335
study 0.0215421
Code
data_wide$lazy_change <- data_wide$lazy_2 - data_wide$lazy_1
data_wide$lazyIncrease <- case_when(data_wide$lazy_change >= 1 ~ "1",
                              data_wide$lazy_change == 0 ~ "0",
                              TRUE ~ "-1")

ggplot(data_wide, aes(lazy_change, givingUp_2)) +
  geom_jitter(aes(colour=factor(lazyIncrease)), alpha=0.5) +
  stat_smooth(method="lm", color="#003f5c") +
  scale_x_continuous(breaks=c(-4:4)) +
  labs(x = "Change in Perceived Patient Laziness from Strike 1 to Strike 2",
       y = "Desire to 'Give Up' after Strike 2",
       title = "\U0394 Laziness \U2192 Giving Up",
       subtitle = "Meta-Analysis") +
  guides(colour=guide_legend(title="Direction\nof Change")) +
  scale_color_manual(values=c("#B3DFFF", "#768fe8", "#0a7cfc"), labels=c("Decrease", "No Change", "Increase")) +
  theme_perez() +
  theme(legend.position="bottom")

Code
ggplot(data_wide, aes(lazy_change, givingUp_2, fill=conditionSES)) +
  geom_jitter() +
  stat_smooth(method="lm") +
  scale_x_continuous(breaks=c(-3:4)) +
  labs(x = "Change in Perceived Patient Laziness from Strike 1 to Strike 2",
       y = "Desire to 'Give Up' after Strike 2") +
  theme_perez() +
  theme(legend.position="bottom")

Code
mod <- lm(givingUp_2 ~ honest_2 + conditionSES + honest_1 + income_Self + ladder_Self + ed_Own + conditionRace + study, data_wide)

tab_model(mod)
  givingUp_2
Predictors Estimates CI p
(Intercept) 2.62 1.96 – 3.29 <0.001
honest 2 -0.13 -0.23 – -0.02 0.018
conditionSES [Low SES] -0.00 -0.20 – 0.19 0.995
honest 1 -0.03 -0.16 – 0.11 0.681
income Self -0.04 -0.10 – 0.02 0.164
ladder Self 0.07 0.02 – 0.13 0.009
ed Own -0.01 -0.16 – 0.13 0.843
conditionRace [White] 0.15 -0.05 – 0.34 0.137
study 0.22 0.11 – 0.33 <0.001
Observations 638
R2 / R2 adjusted 0.048 / 0.036
Code
effectsize::eta_squared(mod, partial=T) %>% 
  select(1:2) %>% 
  kable(caption = "Effect Sizes")
Effect Sizes
Parameter Eta2_partial
honest_2 0.0132327
conditionSES 0.0000466
honest_1 0.0000648
income_Self 0.0012717
ladder_Self 0.0086612
ed_Own 0.0005270
conditionRace 0.0032088
study 0.0229624
Code
# settings for plots
data_wide$honest_change <- data_wide$honest_1 - data_wide$honest_2

data_wide$honIncrease <- case_when(data_wide$honest_change >= 1 ~ "1",
                              data_wide$honest_change == 0 ~ "0",
                              TRUE ~ "-1")

ggplot(data_wide, aes(honest_change, givingUp_2)) +
  geom_jitter(aes(colour=factor(honIncrease)), alpha=0.5) +
  stat_smooth(method="lm", color="#003f5c") +
  scale_x_continuous(breaks=c(-4:4)) +
  labs(x = "Change in Perceived Patient Honesty from Strike 1 to Strike 2",
       y = "Desire to 'Give Up' after Strike 2",
       title = "\U0394 Honesty \U2192 Giving Up",
       subtitle = "Meta-Analysis") +
  guides(colour=guide_legend(title="Direction\nof Change")) +
  scale_color_manual(values=c("#B3DFFF", "#768fe8", "#0a7cfc"), labels=c("Decrease", "No Change", "Increase")) +
  theme_perez() +
  theme(legend.position="bottom")

Code
mod <- lm(givingUp_2 ~ exaggerate_2 * conditionSES + exaggerate_1 + income_Self + ladder_Self + ed_Own + conditionRace + study, data_wide)

tab_model(mod)
  givingUp_2
Predictors Estimates CI p
(Intercept) 0.89 0.28 – 1.51 0.005
exaggerate 2 0.33 0.20 – 0.46 <0.001
conditionSES [Low SES] -0.15 -0.70 – 0.39 0.582
exaggerate 1 0.12 0.00 – 0.24 0.049
income Self -0.02 -0.07 – 0.03 0.408
ladder Self 0.06 0.01 – 0.11 0.022
ed Own -0.00 -0.14 – 0.14 0.974
conditionRace [White] 0.08 -0.10 – 0.26 0.376
study 0.12 0.01 – 0.22 0.025
exaggerate 2 ×
conditionSES [Low SES]
0.05 -0.11 – 0.22 0.534
Observations 644
R2 / R2 adjusted 0.158 / 0.146
Code
effectsize::eta_squared(mod, partial=T) %>% 
  select(1:2) %>% 
  kable(caption = "Effect Sizes")
Effect Sizes
Parameter Eta2_partial
exaggerate_2 0.1414097
conditionSES 0.0000261
exaggerate_1 0.0058366
income_Self 0.0000318
ladder_Self 0.0070529
ed_Own 0.0002448
conditionRace 0.0010366
study 0.0078065
exaggerate_2:conditionSES 0.0006090
Code
data_wide$exag_change <- data_wide$exaggerate_2 - data_wide$exaggerate_1

data_wide$exagIncrease <- case_when(data_wide$exag_change >= 1 ~ "1",
                              data_wide$exag_change == 0 ~ "0",
                              TRUE ~ "-1")

ggplot(data_wide, aes(exag_change, givingUp_2)) +
  geom_jitter(aes(colour=factor(exagIncrease)), alpha=0.5) +
  stat_smooth(method="lm", color="#003f5c") +
  scale_x_continuous(breaks=c(-4:4)) +
  labs(x = "Change in Perceived Pain Exaggeration from Strike 1 to Strike 2",
       y = "Desire to 'Give Up' after Strike 2",
       title = "\U0394 Pain Exaggeration \U2192 Giving Up",
       subtitle = "Meta-Analysis") +
  guides(colour=guide_legend(title="Direction\nof Change")) +
  scale_color_manual(values=c("#B3DFFF", "#768fe8", "#0a7cfc"), labels=c("Decrease", "No Change", "Increase")) +
  theme_perez() +
  theme(legend.position="bottom")

Code
ggplot(data=data, aes(conditionSES, treatAvg, fill=factor(strike))) +
  geom_bar(stat="summary", fun.y="mean", position="dodge") +
  stat_sum_df("mean_cl_boot", geom = "errorbar", position= position_dodge(.9), conf.int=.68, width=0.2) +
  expand_limits(y=c(1:4)) +
  scale_y_continuous(breaks=c(1:4), labels=c("1-Lowest\nTreatment\nIntensity","2","3","4-Highest\nTreatment\nIntensity")) +
  xlab("Patient SES") +
  ylab("Treatment Intensity") +
  theme_perez() +
  scale_fill_grey() +
  guides(fill=guide_legend(title="Noncompliance Incident / 'Strike'")) +
  theme(legend.position="bottom") +
  theme(axis.text.x=element_text(angle=15, vjust=.8, hjust=0.8))

Code
modTreat <- lmer(treatAvg ~ conditionSES + strike + income_Self + ladder_Self + ed_Own + study + conditionRace + (1|ResponseId), data=data)

anova(modTreat)
Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
conditionSES   1.6953  1.6953     1 638.66  7.7669 0.0054793 ** 
strike        13.5223 13.5223     1 643.98 61.9503 1.496e-14 ***
income_Self    0.1880  0.1880     1 638.28  0.8611 0.3537711    
ladder_Self    0.2148  0.2148     1 639.05  0.9840 0.3216007    
ed_Own         0.0133  0.0133     1 638.45  0.0608 0.8053193    
study          2.7543  2.7543     1 638.29 12.6186 0.0004101 ***
conditionRace  0.0121  0.0121     1 638.68  0.0555 0.8137926    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
effectsize::eta_squared(modTreat, partial=T) %>% 
  select(1:2) %>% 
  kable(caption = "Effect Sizes")
Effect Sizes
Parameter Eta2_partial
conditionSES 0.0120152
strike 0.0877569
income_Self 0.0013473
ladder_Self 0.0015373
ed_Own 0.0000952
study 0.0193863
conditionRace 0.0000869
Code
emmeans(modTreat, pairwise ~ conditionSES)
$emmeans
 conditionSES emmean     SE  df lower.CL upper.CL
 High SES       1.71 0.0360 639     1.64     1.78
 Low SES        1.57 0.0352 639     1.50     1.63

Results are averaged over the levels of: strike, conditionRace 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
 contrast           estimate     SE  df t.ratio p.value
 High SES - Low SES    0.141 0.0505 639   2.787  0.0055

Results are averaged over the levels of: strike, conditionRace 
Degrees-of-freedom method: kenward-roger 
Code
emmeans(modTreat, pairwise ~ strike)
$emmeans
 strike emmean     SE  df lower.CL upper.CL
      1   1.53 0.0283 958     1.48     1.59
      2   1.74 0.0283 959     1.68     1.79

Results are averaged over the levels of: conditionSES, conditionRace 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
 contrast          estimate    SE  df t.ratio p.value
 strike1 - strike2   -0.205 0.026 644  -7.871  <.0001

Results are averaged over the levels of: conditionSES, conditionRace 
Degrees-of-freedom method: kenward-roger 

Patient SES Manipulation Check

Code
tab_model(t.test(data_wide$ladder_Patient ~ data_wide$SES))
  Dependent variable
Predictors Estimates CI p
data_wide$ladder_Patient 1.15 0.93 – 1.38 <0.001
Code
tab_model(t.test(data_wide$income_Patient ~ data_wide$SES))
  Dependent variable
Predictors Estimates CI p
data_wide$income_Patient 1.07 0.89 – 1.25 <0.001
Code
tab_model(t.test(data_wide$ed_Patient ~ data_wide$SES))
  Dependent variable
Predictors Estimates CI p
data_wide$ed_Patient 0.49 0.41 – 0.58 <0.001

Participant Demographics

Code
hist(data_wide$ladder_Self, xlab = "Ladder Position", main = "Subjective SES (Ladder)")

Code
kable(psych::describe(data_wide$ladder_Self), caption = "Subjective SES (Ladder)", row.names = NA)
Subjective SES (Ladder)
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 1124 6.772242 1.837498 7 6.911111 1.4826 1 10 9 -0.6708252 0.1092646 0.054808
Code
hist(data_wide$income_Self, xlab = "Income", main = "Objective SES (Income)")

Code
kable(psych::describe(data_wide$income_Self), row.names = NA, caption = "Objective SES (Income)") 
Objective SES (Income)
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 1110 4.779279 1.989812 5 4.949324 2.9652 1 7 6 -0.4790811 -1.066997 0.0597242
Code
kable(table(factor(data_wide$ed_Own, labels = c("< HS", "HS", "College", "Post-grad"))), col.names = c("Education Level", "n"), caption = "Objective SES (Education Level)", row.names = NA)
Objective SES (Education Level)
Education Level n
< HS 8
HS 277
College 303
Post-grad 67
Code
kable(table(factor(data_wide$race_Self, labels = c("White/Caucasian", "Asian/Asian-American", "Black/African American", "Hispanic/Latinx", "East Asian/East Asian-American", "Multiracial", "Other"))), col.names = c("Race", "n"), caption = "Race", row.names = NA) 
Race
Race n
White/Caucasian 721
Asian/Asian-American 198
Black/African American 58
Hispanic/Latinx 70
East Asian/East Asian-American 15
Multiracial 47
Other 16
Code
kable(table(data_wide$gender_Self), col.names = c("Gender", "n"), caption = "Gender", row.names = NA) 
Gender
Gender n
Female 759
Male 354
Non-Conform 5
Other 3
Trans 5

Additional Outcomes

Code
ggplot(data=data, aes(conditionSES, motivated, fill=as.factor(strike))) +
  geom_bar(stat="summary", fun.y="mean", position="dodge") +
  stat_sum_df("mean_cl_boot", geom = "errorbar", position= position_dodge(.9), conf.int=.68, width=0.2) +
  expand_limits(y=c(1:5)) +
  scale_y_continuous(breaks=c(1:5)) +
  theme_perez() +
  scale_fill_grey() +
  xlab("Patient SES") +
  ylab("Perception of Patient Motivation to Improve") +
  guides(fill=guide_legend(title="Noncompliance Incident / 'Strike'")) +
  theme(legend.position="bottom") +
  theme(axis.text.x=element_text(angle=15, vjust=.8, hjust=0.8))

Code
modMotiv <- lmer(motivated ~ conditionSES * strike + ladder_Self + income_Self + ed_Own + study + conditionRace + (1|ResponseId), data=data, na.action=na.omit)

kable(anova(modMotiv))
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
conditionSES 0.2317683 0.2317683 1 1094.6963 0.5337076 0.4652086
strike 50.8918421 50.8918421 1 644.0302 117.1918670 0.0000000
ladder_Self 0.0827748 0.0827748 1 640.1766 0.1906107 0.6625561
income_Self 1.3344852 1.3344852 1 640.4835 3.0730035 0.0800807
ed_Own 0.2456570 0.2456570 1 640.9898 0.5656900 0.4522528
study 2.9229805 2.9229805 1 641.5510 6.7309323 0.0096920
conditionRace 3.5255331 3.5255331 1 640.6298 8.1184683 0.0045224
conditionSES:strike 0.0690768 0.0690768 1 644.0359 0.1590675 0.6901487
Code
ggplot(data=data, aes(conditionSES, severe)) +
  geom_bar(stat="summary", fun.y="mean", position="dodge") +
  facet_wrap(~study) +
  stat_sum_df("mean_cl_boot", geom = "errorbar", position= position_dodge(.9), conf.int=.68, width=0.2) +
  expand_limits(y=c(1:5)) +
  theme_perez() +
  scale_fill_grey() +
  xlab("Condition") +
  ylab("Initial Perceived Pain Severity") +
  theme(legend.position="bottom")

Code
modSevere <- lm(severe ~ conditionSES + study + income_Self + ladder_Self + ed_Own + study + conditionRace, data=data_wide)

kable(anova(modSevere))
Df Sum Sq Mean Sq F value Pr(>F)
conditionSES 1 0.0423033 0.0423033 0.0518208 0.8199975
study 1 42.0621719 42.0621719 51.5254714 0.0000000
income_Self 1 1.1183138 1.1183138 1.3699161 0.2422626
ladder_Self 1 0.3357819 0.3357819 0.4113273 0.5215266
ed_Own 1 0.1522614 0.1522614 0.1865177 0.6659765
conditionRace 1 1.2315807 1.2315807 1.5086662 0.2197949
Residuals 639 521.6396304 0.8163374 NA NA
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
conditionSES 0.1509537 0.1509537 1 1157.1000 0.6201895 0.4311382
strike 16.6743110 16.6743110 1 643.4295 68.5059771 0.0000000
ladder_Self 0.3313833 0.3313833 1 639.9235 1.3614796 0.2437158
income_Self 0.0033396 0.0033396 1 639.2686 0.0137207 0.9067895
ed_Own 0.5087823 0.5087823 1 639.7310 2.0903190 0.1487248
study 2.5210513 2.5210513 1 639.8163 10.3576745 0.0013545
conditionRace 0.6540915 0.6540915 1 639.5736 2.6873180 0.1016417
conditionSES:strike 0.0000742 0.0000742 1 643.4295 0.0003050 0.9860726
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
conditionSES 0.0070500 0.0070500 1 405.2264 0.0103466 0.9190306
strike 68.3020135 68.3020135 1 254.5020 100.2397843 0.0000000
ladder_Self 1.2126889 1.2126889 1 252.0845 1.7797377 0.1833855
income_Self 0.5717784 0.5717784 1 252.7423 0.8391398 0.3605161
ed_Own 1.0458907 1.0458907 1 252.0512 1.5349453 0.2165242
conditionRace 4.5902363 4.5902363 1 252.0304 6.7366139 0.0099994
conditionSES:strike 0.4118554 0.4118554 1 254.4978 0.6044374 0.4376120

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
conditionSES 0.0020823 0.0020823 1 1661.960 0.0020563 0.9638367
strike 293.3453541 293.3453541 1 1104.559 289.6833921 0.0000000
ladder_Self 5.1737741 5.1737741 1 1101.229 5.1091875 0.0239941
race_Self 1.4052377 1.4052377 1 1102.830 1.3876955 0.2390488
income_Self 2.8745511 2.8745511 1 1100.882 2.8386668 0.0923040
study 1.1776692 1.1776692 1 1100.640 1.1629679 0.2810872
conditionRace 0.0041485 0.0041485 1 1100.822 0.0040967 0.9489772
conditionSES:strike 0.2001312 0.2001312 1 1104.556 0.1976329 0.6567254

Df Sum Sq Mean Sq F value Pr(>F)
conditionSES 1 89.7868803 89.7868803 94.5818825 0.0000000
ladder_Self 1 0.4096606 0.4096606 0.4315383 0.5114716
race_Self 1 0.9760359 0.9760359 1.0281603 0.3109749
income_Self 1 1.8541792 1.8541792 1.9532003 0.1627274
ed_Own 1 0.1664168 0.1664168 0.1753042 0.6755809
study 1 0.4852871 0.4852871 0.5112035 0.4748795
conditionRace 1 0.6318106 0.6318106 0.6655519 0.4149107
Residuals 639 606.6047218 0.9493032 NA NA

Df Sum Sq Mean Sq F value Pr(>F)
conditionSES 1 44.515853 44.515853 24.6625003 0.0000009
conditionRace 1 14.388469 14.388469 7.9714440 0.0048999
ladder_Self 1 1.114672 1.114672 0.6175464 0.4322514
race_Self 1 6.094320 6.094320 3.3763517 0.0666017
income_Self 1 1.050241 1.050241 0.5818502 0.4458691
ed_Own 1 2.184482 2.184482 1.2102382 0.2716986
study 1 5.745687 5.745687 3.1832035 0.0748724
Residuals 640 1155.201029 1.805002 NA NA